A Categorical Approach to T_1 Separation and the **Product of State Property Systems†**

Ann Van der Voorde1

Received December 8, 1999

The category **SP** of state property systems and their morphisms was presented by Aerts *et al.* In the present article I will present the functors which establish the equivalence of this category **SP** and the category **Cls** of closure spaces and continuous maps. Aerts et al . and Van Steirteghem proved that T_0 closure spaces correspond to 'state determined' state property systems. In this paper I will show that T_1 closure spaces correspond to 'atomistic' state property systems. I also use the equivalence between the categories **SP** and **Cls** to construct the product of state property systems.

1. THE EQUIVALENCE OF THE CATEGORIES SP AND Cls

In this section I will show the equivalence of the category of the state property systems and the category of the closure spaces. Before associating with each state property system a closure space, I recall the definitions of these two concepts. For the proofs of results cited in this section I refer to ref. 2 and for the necessary category theory I refer to refs. 1 and 7.

Definition 1 (State property system, Cartan map). A triple $(\Sigma, \mathcal{L}, \xi)$ is called a state property system if Σ is a set, $\mathscr L$ is a complete lattice, and $\xi: \Sigma \to \mathcal{P}(\mathcal{L})$ is a function such that for $p \in \Sigma$, 0 the minimal element of \mathcal{L} , and $(a_i)_i \in \mathcal{L}$, we have

$$
0 \notin \xi(p) \tag{1}
$$

$$
a_i \in \xi(p) \quad \forall i \implies a_i \in \xi(p) \tag{2}
$$

and for $a, b \in \mathcal{L}$ we have

[†]This paper is dedicated to the memory of Prof. Gottfried T. Rüttimann.
¹TOPO, Department of Mathematics, Brussels Free University, B-1050 Brussels, Belgium; Email: avdvoord@vub.ac.be.

947

0020-7748/00/0300-0947\$18.00/0 q 2000 Plenum Publishing Corporation

$$
a < b \Leftrightarrow \forall r \in \Sigma: a \in \xi(r) \quad \text{then} \quad b \in \xi(r) \tag{3}
$$

If (Σ,\mathcal{L},ξ) and $(\Sigma',\mathcal{L}',\xi')$ are state property systems, then

$$
(m, n): (\Sigma', \mathcal{L}', \xi') \to (\Sigma, \mathcal{L}, \xi)
$$

is called an **SP**-morphism if *m*: $\Sigma' \rightarrow \Sigma$ and *n*: $\mathcal{L} \rightarrow \mathcal{L}'$ are functions such that for $a \in \mathcal{L}$ and $p' \in \Sigma'$

$$
a \in \xi(m(p')) \Leftrightarrow n(a) \in \xi'(p') \tag{4}
$$

The category of state property systems and their morphisms is denoted by **SP.** If $(\Sigma, \mathcal{L}, \xi)$ is a state property system, then its Cartan map is the mapping $\kappa: \mathcal{L} \to \mathcal{P}(\Sigma)$ defined by

$$
\kappa: \quad \mathcal{L} \to \mathcal{P}(\Sigma): \qquad a \mapsto \kappa(a) = \{ p \in \Sigma | a \in \xi(p) \} \tag{5}
$$

For each state property system (Σ,\mathcal{L},ξ) we can define a preorder on Σ as follows: For $p,q \in \Sigma$, we put

$$
p < q \Leftrightarrow \xi(q) \subset \xi(p) \tag{6}
$$

The physical interpretation of this mathmatical structure is the following. Considering an entity *S*, the set Σ consists of states of *S*, while the set \mathcal{L} consists of properties of *S*. These two sets are linked by means of a function $\xi: \Sigma \to \mathcal{P}(\mathcal{L})$ which maps a state p to the set $\xi(p)$ of all properties that are actual in state *p*. We also say that a state *p* makes the property *a* actual iff $a \in \xi(p)$.

Definition 2 (Closure space). A closure space (X, \mathcal{F}) consists of a set *X* and a family of subsets $\mathcal{F} \subset \mathcal{P}(X)$ satisfying the following conditions:

$$
\emptyset \in \mathcal{F} \tag{7}
$$

$$
(F_i)_i \in \mathcal{F} \implies \cap_i F_i \in \mathcal{F} \tag{8}
$$

The closure operator corresponding to the closure space (X, \mathcal{F}) is defined as

$$
cl: \mathcal{P}(X) \to \mathcal{P}(X): A \mapsto \cap \{F \in \mathcal{F} | A \subset F\} \tag{9}
$$

If (X, \mathcal{F}) and (Y, \mathcal{G}) are closure spaces, then a function $f : (X, \mathcal{F}) \to (Y, \mathcal{G})$ is called a continuous map if $\forall B \in \mathcal{G}: f^{-1}(B) \in \mathcal{F}$. The category of closure spaces and continuous maps is denoted by **Cls**.

The following theorem shows how we can associate with each state property system a closure space and with each morphism a continuous map.

Theorem 1. The correspondence $F:$ **SP** \rightarrow **Cls** consisting of (1) the mapping

Categorical Approach to T₁ Separation 949

$$
|\mathbf{SP}| \to |\mathbf{Cls}| \tag{10}
$$

$$
(\Sigma, \mathcal{L}, \xi) \mapsto F(\Sigma, \mathcal{L}, \xi) = (\Sigma, \kappa(\mathcal{L})) \tag{11}
$$

(2) for every pair of objects $(\Sigma, \mathcal{L}, \xi), (\Sigma', \mathcal{L}', \xi')$ of **SP** the mapping

$$
\mathbf{SP}((\Sigma', \mathcal{L}', \xi'), (\Sigma, \mathcal{L}, \xi)) \to \mathbf{Cls}(F(\Sigma', \mathcal{L}', \xi'), F(\Sigma, \mathcal{L}, \xi)) \tag{12}
$$

$$
(m, n) \mapsto m \tag{13}
$$

is a covariant functor.

We can also connect a state property system to a closure space and a morphism to a continuous map.

Theorem 2. The correspondence *G*: $\text{Cls} \rightarrow \text{SP}$ consisting of (1) the mapping

$$
|Cls| \to |SP| \tag{14}
$$

$$
(\Sigma, \mathcal{F}) \mapsto G(\Sigma, \mathcal{F}) = (\Sigma, \mathcal{F}, \xi) \tag{15}
$$

where $\xi: \Sigma \to \mathcal{P}(\mathcal{F}): p \mapsto {F \in \mathcal{F} | p \in F}.$

(2) for every pair of objects (Σ, \mathcal{F}) , (Σ', \mathcal{F}') of **Cls** the mapping

$$
\mathbf{Cls}((\Sigma', \mathcal{F}'), (\Sigma, \mathcal{F})) \to \mathbf{SP}(G(\Sigma', \mathcal{F}'), G(\Sigma, \mathcal{F}))
$$
(16)

$$
m \mapsto (m, m^{-1}) \tag{17}
$$

is a covariant functor.

Theorem 3 (Equivalence of SP and Cls). The functors $F:$ *SP* \rightarrow *Cls and G*: $\text{CIs} \rightarrow \text{SP}$ establish an equivalence of categories.

2. ATOMISTICITY AND T₁ SEPARATION

In refs. 2 and 8 it is proved that T_0 closure spaces correspond to the state property systems $(\Sigma, \mathcal{L}, \xi)$ for which the function $\xi: \Sigma \to \mathcal{P}(\mathcal{L})$ is injective. For these state property systems a state is completely determined by the set of all properties it makes actual, and they are called state-determined state property systems. Faure [5] showed that the category of T_1 closure spaces (and continuous maps) is equivalent to the category of complete atomistic lattices (and morphisms). In this section a similar result in our context is given.

Definition 3. A closure space (X, \mathcal{F}) is called T_1 if $\forall x \in X$: *x* is closed, i.e., $cl(x) = x$.

Definition 4. Let $(\Sigma, \mathcal{L}, \xi)$ be a state property system. Then the map s_{ξ} maps a state *p* to the strongest property it makes actual, i.e.,

$$
s_{\xi}: \quad \Sigma \to \mathcal{L}; \quad p \mapsto \wedge \xi(p) \tag{18}
$$

Proposition 1. Let $(\Sigma, \mathcal{L}, \xi)$ be a state property system. The following are equivalent:

(1) $\xi: \Sigma \to \mathcal{P}(\mathcal{L})$ is injective and $\forall p \in \Sigma$: $s_{\xi}(p)$ is an atom of \mathcal{L} .

 (2) $\forall p, q \in \Sigma: p \leq q \Rightarrow p = q.$

(3) $F(\Sigma, \mathcal{L}, \xi) = (\Sigma, \kappa(\mathcal{L}))$ is a T₁ closure space.

Proof. (1) \Rightarrow (2). Let *p*, $q \in \Sigma$ with $p < q$. Then we have $s_{\xi}(p) < s_{\xi}(q)$. Since $s_{\xi}(p)$ and $s_{\xi}(q)$ are atoms of \mathcal{L} , we have that $s_{\xi}(p) = s_{\xi}(q)$. Since $\xi: \Sigma \to \mathcal{P}(X)$ is injective, s_{ξ} is also injective. So we have $p = q$.

(2) ⇒ (3). Suppose $q \text{ ∈ } cl(p)$. Then we have $q \text{ ∈ } \kappa(a)$ for every $p \in \kappa(a)$. This means that $a \in \xi(q)$ for every $a \in \xi(p)$. Consequently, $\xi(p) \subset \xi(q)$. Hence $q \leq p$. By (2) we have that $p = q$. This shows that $cl(p) = p$, for every $p \in \Sigma$.

(3) \Rightarrow (1). Since a T₁ closure space is T₀, it follows that $\xi: \Sigma \rightarrow \mathcal{P}(\mathcal{L})$ is injective. Now we show that $s_{\xi}(p)$ is an atom of \mathcal{L} , for $p \in \Sigma$. Let $a \in \mathcal{L}$ with *a* < *s*_i(*p*). Then **k**(*a*) ⊂ **k**(s _i(*p*)). Since **k**(s _i(*p*)) = **k**(λ ξ (*p*)) = ∩**k**(ξ (*p*)) $= \bigcap {\kappa(a)} | a \in {\xi(p)} \big] = \bigcap {\kappa(a)} | p \in \kappa(a) \big] = cl(p) = p$, we have that $\kappa(a) = \emptyset$ or $\kappa(a) = \{p\}$. This means that $a = 0$ or $a = s_{\xi}(p)$.

For each state property system $(\Sigma, \mathcal{L}, \xi), \{s_{\xi}(p)|p \in \Sigma\}$ is an ordergenerating subset of \mathcal{L} [2]. So if for all $p \in \Sigma$, $s_{\varepsilon}(p)$ is an atom of \mathcal{L} , then the lattice $\mathcal L$ is atomistic. Hence, if a state property system satisfies one (and hence all) of the conditions in Proposition 1, then $\mathcal L$ is atomistic. Accordingly we call such a state property system 'atomistic'.

Definition 5 (Atomistic state property system). A state property system (Σ , \mathcal{L} , ξ) is called an atomistic state property system if $\forall p, q \in \Sigma$: *p* < *q* $\Rightarrow p = q$.

Definition 6. We define SP_1 as the full subcategory of SP where the objects are the atomistic state property systems. Similarly we use CIs_1 for the category of T_1 closure spaces with continuous maps as morphisms.

Proposition 2. Let (Σ, \mathcal{F}) be a closure space. Then

$$
(\Sigma, \mathcal{F}) \in |\mathbf{Cls}_1| \Leftrightarrow G(\Sigma, \mathcal{F}) = (\Sigma, \mathcal{F}, \xi) \in |\mathbf{SP}_1| \tag{19}
$$

where $\xi: \Sigma \to \mathcal{P}(\mathcal{F}): p \mapsto {F \in \mathcal{F} \mid p \in F}.$

Proof. Let (Σ, \mathcal{F}) be a T₁ closure space. We will prove that $G(\Sigma, \mathcal{F})$ = $(\Sigma, \mathcal{F}, \xi)$ is an atomistic state property system by using Proposition 1. We first show that $s_{\xi}(p)$ is an atom of \mathcal{F} , for $p \in \Sigma$. Let $F \in \mathcal{F}$ and $F \subset s_{\xi}(p)$. Then we have $F \subset s_{\xi}(p) = \wedge \xi(p) = \bigcap \xi(p) = \bigcap \{F \in \mathcal{F} | p \in F\} = cl(p)$ $=p$. So it follows that $F = \emptyset$ or $F = \{p\} = s_{\xi}(p)$. This shows that $s_{\xi}(p)$ is

an atom of $\mathcal F$. The injectivity of ξ follows immediately from the fact that a T_1 closure space is also T_0 . Conversely, if $G(\Sigma, \mathcal{F}) = (\Sigma, \mathcal{F}, \xi) \in |SP_1|$, then we have that $\forall p, q \in \Sigma: p < q \Rightarrow p = q$. By Proposition 1 we have $(\Sigma, \mathcal{F}) = FG(\Sigma, \mathcal{F}) \in |Cls_1|.$

Theorem 4. The covariant functors *F* and *G* restrict and corestrict to functors $F:$ $\mathbf{SP}_1 \rightarrow \mathbf{Cls}_1$ and $G:$ $\mathbf{Cls}_1 \rightarrow \mathbf{SP}_1$ which establish an equivalence of categories. Hence $SP_1 \approx Cls_1$.

Proof. This is an immediate consequence of Theorem 3 and Propositions 1 and 2. \blacksquare

3. PRODUCT OF STATE PROPERTY SYSTEMS

In this section I will construct the product of state property systems using the equivalence between the categories **SP** and **Cls**. Since **Cls** is a topological category (over **Set**), the product of a family of closure spaces $(X_i, \mathcal{F}_i)_{i \in I}$ is the closure space (X, \mathcal{F}) , where $X = \prod_{i \in I} X_i$ is the Cartesian product of the family $(X_i)_{i \in I}$ and $\mathcal F$ is the initial closure structure with respect to $(X, \pi_i, (X_i, \mathcal{F}_i))$. I first recall the construction of the initial closure structure with respect to a given source. For the proof of the following propositions, see refs. 4 and 7.

Proposition 3 (Initial structures in Cls). Let *X* be a set, $(X_i, \mathcal{F}_i)_{i \in I}$ a family of closure spaces, and $(f_i: X \to X_i)_{i \in I}$ a family of maps. Then $\mathcal{F} =$ ${\lbrace \bigcap_{i \in I} f_i^{-1}(F_i) | F_i \in \mathcal{F}_i \rbrace}$ is the initial closure structure with respect to $(X, f_i, (X_i, \mathcal{F}_i)).$

Proposition 4 (Products in Cls). Let (X_1, \mathcal{F}_1) and (X_2, \mathcal{F}_2) be closure spaces. Then $((X, \mathcal{F}), (\pi_1, \pi_2))$ is the product of (X_1, \mathcal{F}_1) and (X_2, \mathcal{F}_2) in **Cls**, where

$$
X = X_1 \times X_2
$$
 (Cartesian product) (20)

$$
\pi_i: X \to X_i: \quad (x_1, x_2) \to x_i \tag{21}
$$

$$
\mathcal{F} = \{ \cap_{i \in \{1,2\}} \pi_i^{-1} (F_i) | F_i \in \mathcal{F}_i, i \in \{1,2\} \} \tag{22}
$$

$$
= \{F_1 \times F_2 | F_1 \in \mathcal{F}_1, F_2 \in \mathcal{F}_2\} \tag{23}
$$

To simplify the calculations, I will construct the product of two state property systems, which can be generalized to arbitrary families of state property systems.

Theorem 5. Let $(\Sigma_1, \mathcal{L}_1, \xi_1)$ and $(\Sigma_2, \mathcal{L}_2, \xi_2)$ be state property systems. Then $((\Sigma, \mathcal{L}, \xi), ((\pi_1, \pi_1^{-1} \circ \kappa_1), (\pi_2, \pi_2^{-1} \circ \kappa_2)))$ is the product of $(\Sigma_1, \mathcal{L}_1, \xi_1)$ and $(\Sigma_2, \mathcal{L}_2, \xi_2)$, where

$$
\Sigma = \Sigma_1 \times \Sigma_2 \tag{24}
$$

$$
\mathcal{L} = \{ \kappa_1(a_1) \times \kappa_2(a_2) | a_i \in \mathcal{L}_i \}
$$
 (25)

$$
\kappa_1(a_1) \times \kappa_2(a_2) < \kappa_1(b_1) \times \kappa_2(b_2) \Leftrightarrow a_1 < b_1 \quad \text{and} \quad a_2 < b_2 \tag{26}
$$

$$
\vee_i(\kappa_1(a_1^i) \times \kappa_2(a_2^i)) = \kappa_1(\vee_i a_1^i) \times \kappa_2(\vee_i a_2^i)
$$
 (27)

$$
\wedge_i(\kappa_1(a_1^i) \times \kappa_2(a_2^i)) = \kappa_1(\wedge_i a_1^i) \times \kappa_2(\wedge_i a_2^i)
$$
\n(28)

$$
\xi: \quad \Sigma \to \mathcal{P}(\mathcal{L}): \quad (p_1, p_2) \mapsto {\kappa_1(a_1) \times \kappa_2(a_2)} | a_i \in \xi_i(p_i) \tag{29}
$$

$$
\pi_i: X \mapsto X_i: (x_1, x_2) \mapsto x_i \tag{30}
$$

Proof. Using the equivalence functor $F:$ **SP** \rightarrow **Cls** as proposed in Theorem 1, we find the closure spaces $(\Sigma_1, \kappa_1(\mathcal{L}_1))$ and $(\Sigma_2, \kappa_2(\mathcal{L}_2))$. By the previous proposition we find that $((\Sigma, \mathcal{L}), (\pi_1, \pi_2))$ is the product of these two closure spaces, where

$$
\Sigma = \Sigma_1 \times \Sigma_2 \tag{31}
$$

$$
\mathcal{L} = \{ \kappa_1 \left(a_1 \right) \times \kappa_2 \left(a_2 \right) \middle| a_i \in \mathcal{L}_i \} \tag{32}
$$

Since the functor *G*: **Cls** \rightarrow **SP** from Theorem 2 is an equivalence functor, $G((\Sigma, \mathcal{L}), (\pi_1, \pi_2))$ is the product of $G(\Sigma_1, \kappa_1(\mathcal{L}_1))$ and $G(\Sigma_2, \kappa_2(\mathcal{L}_2)).$

We have

$$
G(\Sigma, \mathcal{L}) = (\Sigma, \mathcal{L}, \xi) \tag{33}
$$

$$
\xi: \quad \Sigma \to \mathcal{P}(\mathcal{L}): \quad (p_1, p_2) \mapsto \{ \kappa_1(a_1) \times \kappa_2(a_2) | a_i \in \xi_i(p_i) \} \tag{34}
$$

$$
G(\pi_i) = (\pi_i, \pi_i^{-1}) \colon (\Sigma, \mathcal{L}, \xi) \to G(\Sigma_i, \kappa_i(\mathcal{L}_i))
$$
(35)

 $(Id_{\Sigma_1}, \kappa_1)$: $G(\Sigma_1, \kappa_1(\mathcal{L}_1)) \to (\Sigma_1, \mathcal{L}_1, \kappa_1)$ and

$$
(Id_{\Sigma_2}, \kappa_2): G(\Sigma_2, \kappa_2(\mathcal{L}_2)) \to (\Sigma_2, \mathcal{L}_2, \xi_2)
$$

are isomorphisms. Hence,

$$
\begin{aligned} (G(\Sigma, \mathcal{L}), ((Id_{\Sigma_1}, \kappa_1) \circ G(\pi_1), (Id_{\Sigma_2}, \kappa_2) \circ G(\pi_2))) \\ &= ((\Sigma, \mathcal{L}, \xi), ((\pi_1, \pi_1^{-1} \circ \kappa_1), (\pi_2, \pi_2^{-1} \circ \kappa_2))) \end{aligned}
$$

is the product of $(\Sigma_1, \mathcal{L}_1, \xi_1)$ and $(\Sigma_2, \mathcal{L}_2, \xi_2)$.

Remark 1. (a) The product presented in ref. 2 is of course isomorphic to the construction in Theorem 5.

(b) CIs_1 is closed under formation of products in CIs_1 , i.e., if we consider a family of T_1 closure spaces, then the product formed in **Cls** is also a T_1 closure space. By Theorem 4 it follows that the product of an arbitrary family of atomistic state property systems is an atomistic state property system.

REFERENCES

- 1. Ada´mek, J., Herrlich, H., and Strecker, G. E. (1990). *Abstract and Concrete Categories*, Wiley, New York.
- 2. Aerts, D., Colebunders, E., Van der Voorde, A., and Van Steirteghem, B. (1999). State property systems and closure spaces: A study of categorical equivalence, *International Journal of Theoretical Physics*, **38**, 359–385.
- 3. Aerts, D. (2000). The description of joint quantum entities and the formulation of a paradox, *International Journal of Theoretical Physics*, this issue.
- 4. Dikranjan, D., Giuli, E., and Tozzi, A. (1988). Topological categories and closure operators, *Quaestiones Mathematicae*, **11**, 323–337.
- 5. Faure, C. A. (1994). Categories of closure spaces and corresponding lattices, *Cahier de topologie et ge´ometrie diffe´rentielle cate´gorigues*, **35**, 309–319.
- 6. Moore, D. J. (1997). Closure categories, *International Journal of Theoretical Physics*, **36**, No. 12.
- 7. Preuss, G. (1988). *Theory of topological structures*, Reidel, Dordrecht.
- 8. Van Steirteghem, B. (2000). T₀ separation in axiomatic quantum mechanics, *International Journal of Theoretical Physics*, this issue.